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EXECUTIVE SUMMARY 

This report is designed to document the current status of 
remote sensing data types and image processing techniques 
that are commonly used for mapping and monitoring several 
geohazards known to be of significance in South Africa. In 
particular, it focuses on the use of optical imagery, LiDAR 
(light detection and ranging), and synthetic aperture RADAR. 
This document has been written in consultation with the 
South Africa Council for Geosciences, and is intended to be 
continually updated as the technology in this field 
progresses. 
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1 INTRODUCTION 

The use of remote sensing and spatial information is becoming increasingly prevalent 
for many different environmental applications. In particular the potential of remote 
sensing for providing information relating to geological hazard assessment is gaining 
momentum as data becomes more readily available, and awareness of the 
technology is enhanced in the community. Remote sensing remains the only way of 
providing broad scale assessments of environmental features and processes, such 
as information relating to vulnerability to geological hazards and/or damage 
assessment post event. 
 
The purpose of this report is to review the current state of the art of remote sensing 
for mapping and monitoring a number of geological hazards known to be of 
significance in South Africa. The identified hazards of interest include landslides and 
slope instability; seismic hazard (natural or mining induced); deformation associated 
with mining and water abstraction; sinkholes; tsunami; erosion; problem soils; and 
geochemical hazards. 
 
However it is first instructive to briefly introduce the reader to the broader field of 
remote sensing, including several technical concepts that will be presented 
throughout this document. In particular, the main types of remote sensing that will be 
reviewed are optical, synthetic aperture RADAR (SAR), and LiDAR (Light Detection 
and Ranging). Each of these data types may be acquired using airborne or satellite 
platforms, though the emphasis here will be preferentially on satellite data, due to the 
broad area coverage that it provides, and the relatively lower cost than airborne 
acquisitions. Some of the commonly used sensors that will also be mentioned 
throughout this document are listed in Table 1. 
 
Table 1: Summary of the characteristics of some sen sors used in hazards mapping and 
monitoring (Joyce , et al.  2009a) 
 
Platform  Sensor  Swath 

(km) 
Nadir spatial 
resolution 
(m) 

Revisit capability  

Airborne 
sensors 

variable Variable -  
(dependent 
on flying 
height) 

> 0.1 
(dependent 
on flying 
height) 

Mobilised to order 

Worldview Panchromatic 16.4 0.46 1.1 days 

 Multispectral 16.4 1.85 

Quickbird Panchromatic 16.5 0.6 1.5 - 3 days 

 Multispectral 16.5 2.4 

Ikonos Panchromatic 11 1 1.5 - 3 days 

 Multispectral 11 4 

RapidEye Multispectral 77 x 1500 6.5 1 day (5 satellites in 
constellation) 

EO-1 ALI 60 30 16 days 

 Hyperion 7.5 30 

Terra ASTER* 60 15,30,90 4-16 days 

Terra / 
Aqua 

MODIS 2300 250, 500, 
1000 

At least twice daily for each 
satellite 

ALOS PRISM 35 4 Several times per year as 
per JAXA acquisition plan  AVNIR 70 10 
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Platform  Sensor  Swath 
(km) 

Nadir spatial 
resolution 
(m) 

Revisit capability  

 PALSAR 
(Fine) 

40 -70 10 

 PALSAR 
(ScanSAR) 

250 - 350 100 

SPOT-4 Panchromatic 60-80 10 11 times every 26 days 

 Multispectral 60-80 20 

SPOT-5 Panchromatic 60-80 5 11 times every 26 days 

 Multispectral 60-80 10 

Kompsat Panchromatic 15 1 2 - 3 days 

 Multispectral 15 1 

Landsat-5 TM 
Multispectral 

185 30 Every 16 days 

 TM Thermal 185 120 

Landsat-7** ETM+ 
Panchromatic 

185 15 Every 16 days 

 ETM+ 
Multispectral 

185 30 

 ETM+ Thermal 185 60 

NOAA AVHRR 2399 1100 Several times per day 

Envisat MERIS 575 300 2 - 3 days 

Radarsat-2 Ultra-fine 20 3 24 days 

Radarsat-
1/-2 

Fine 50 8 

Radarsat-2 Quad-pol fine 25 8 

Radarsat-
1/-2 

Standard 100 25 

Radarsat-2 Quad-pol 
standard 

25 25 

Radarsat-1 Wide 150 30 

Radarsat-
1/-2 

ScanSAR 
narrow 

300 50 

Radarsat-
1/-2 

ScanSAR wide 500 100 

Radarsat-
1/-2 

Extended high 75 25 

Radarsat-1 Extended low 170 35 

ERS-2  100 30 35 day repeat cycle 

     

Envisat ASAR 
standard 

100 30 35 day repeat cycle 

 ASAR 
ScanSAR 

405 1000 

TerraSAR-X Spotlight 10 1 11 day repeat cycle;  2.5 day 
revisit capability  Stripmap 30 3 

 ScanSAR 100 18 

Cosmo-
Skymed 

Spotlight 10 <1 4 days (constellation of 4 
satellites each with a 16 day 
cycle)  Stripmap 40 3-15 

 ScanSAR 100-200 30-100 
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*  ASTER SWIR detectors are no longer functioning, SWIR data acquired since April 
2008 are not useable 
** Landsat-7 nearing the end of its useful life; problems with scan line corrector 
resulting in data gaps 
 
1.1 Optical Remote Sensing 

The field of optical remote sensing has a wide ranging number of applications. It is 
also possible to consider optical remote sensing from a variety of scales. 
Environmental remote sensing typically refers to detailed field based measurements 
(e.g. field spectrometry); airborne imagery; and satellite imagery. Specifically the type 
of data acquired in optical remote sensing makes use of the visible, near infrared 
(NIR), and shortwave infrared (SWIR) parts of the electromagnetic radiation (EMR) 
spectrum. A sensor is termed ‘panchromatic’ if it acquires data in a single region or 
waveband of the spectrum. A ‘multispectral’ sensor will acquire several (up to ten) 
broad spectral bands, while a ‘hyperspectral’ sensor will acquire many more narrow 
bands. 
 
Information obtained from features and processes on the land, water, and 
atmosphere make use of characteristic absorption and reflection of various 
wavelengths of light within the EMR spectrum. By understanding unique and 
characteristic absorption and reflection properties of features of interest, remote 
sensing affords identification of such features, leading then to mapping, monitoring, 
and management over broader scales. It is important to stress here that it is not 
possible to identify a feature in imagery without understanding or knowing its 
characteristic spectral and/or spatial properties, and there are some instances where 
this difficulty in identification will preclude the use of optical remote sensing entirely 
for a particular application. Recognition of this fact is crucial in ensuring that the 
technology is not ‘oversold’ to decision makers. 
 
Remote sensing data types vary in the amount of detail that they can provide in 
terms of spatial, spectral, temporal, and radiometric information. Table 2 below 
provides examples of potential information that may be required at different spatial, 
spectral, and temporal scales. This is linked to Table 3, which gives examples of the 
sensors that are potentially capable of providing data at the different scales within 
these three dimensions. Additional potential sensors can also be cross referenced in 
Table 1. Note that there is a necessary trade-off when selecting an appropriate 
sensor for a particular application, that to achieve a high temporal resolution (for 
example), then either spectral or spatial resolution, or both, must be compromised 
and vice versa. 
 
Table 2: Examples of potential information requirem ents from remotely sensed data 
Required 
Detail 

Spatial  Spect ral  Temporal  

Low  National Inundated areas from flooding 
(i.e. distinction between water 
and land) 

Annual 

Medium  Regional Landcover types, exposed soil 
vs. vegetation, vegetation 
density, moisture content 

Seasonal 

High  Local Mineral identification, soil 
characteristics  

Daily 
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Table 3: Examples of potential sensors that may pro vide data associated with Table 2 
Required 
Resolution  

Spatial  Spectral  Temporal  

Low  MODIS / 
AVHRR 

Panchromatic sensor (available 
on many different satellites) 

All sensors / platforms 

Medium  SPOT, Landsat, 
ASTER 

Multispectral – SPOT, Landsat, 
ASTER, Quickbird, IKONOS 

Most sensors / 
platforms 

High  Quickbird, 
IKONOS, Aerial 
photography, 
Worldview-2 

Hyperspectral – Hymap, 
Hyperion 

MODIS 

 
Optical remote sensing differs fundamentally from SAR and LiDAR (to be discussed 
in subsequent sections), as it is most commonly a passive form of data collection as 
opposed to an active one. This means that the energy source is not provided by the 
sensor itself, but in this case the external source is the sun. Conversely, an active 
sensor both provides and records the energy. 
 
1.2 Synthetic Aperture RADAR 

Synthetic Aperture Radar (SAR) is an active air- or space-borne sensor that operates 
in a microwave diapason (wavelength ~2-25 cm). Since microwave radiation 
penetrates cloud coverage with minimal losses this sensor can be used in any 
weather and lighting conditions, for example, during a storm or at night (Elachi 1987). 
Radar data are acquired in long strips and focused to a Single Look Complex (SLC) 
format assuming synthetic aperture. The main advantage of SAR in comparison to a 
regular radar is a significant improvement in azimuth resolution (Hanssen 2001). 
Focused data in a Single Look Complex (SLC) format is in range-azimuth coordinate 
system and can be geocoded at later time. SLC data preserves phase information 
and can be used for the Synthetic Aperture Radar Interferometry (InSAR) processing. 
Various beam modes are supported by different sensors including spotlight, 
stripmap, and scansar.   
 
SAR is a side looking sensor. Such configuration helps to avoid ambiguities in 
received signal. However, this geometry introduces distortions such as shadows, 
layover and foreshortening, which complicates visual interpretation of images. Data 
acquired over the same region with different incidence angles will appear different. It 
is practically impossible to perform computational analysis of two images acquired 
over the same area with two different incidence angles. Therefore, for multi-temporal 
analysis or for InSAR processing it is important to have data acquired with similar 
incidence angles. 
 
During data acquisition, SAR sensors record in-phase and quadrature components 
reflected from the ground waves. This information then is converted to an amplitude 
and a phase. Amplitude information is usually utilized in a similar way to optical 
sensors, by looking at the magnitude of response and how that relates to different 
ground features. For example, it can be used for mapping ground changes and 
infrastructure damages by calculating a ratio or difference between multi-temporal 
images and then applying supervised or unsupervised classification (Matsuoka and 
Yamazaki 2005). The main limitation of this approach is a significant variability of 
backscatter intensity for different regions, lack of quantitative estimations and 
dependence on incidence angle.  
 
Phase information is proportional to a travel time (or distance, assuming constant 
velocity) that takes for the wave to travel from the satellite to the ground and then 
back to the satellite. Therefore, phase can be used for measuring distances to 
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objects and in case of InSAR analysis for estimation of object motion.  The limitation 
of this approach is the inability to unambiguously reconstruct travel time from the 
measured wrapped phase. The unwrapping methodology that attempts to reconstruct 
phase information has been developed and used in InSAR processing (e.g. 
Costantine (1998)). 
 
Synthetic Aperture Radar Interferometry (InSAR) is a processing technique that uses 
two SAR images acquired by the same or similar sensors over the same area 
(Hanssen 2001, Massonnet and Feigl 1998, Rosen, et al. 2000). Along-track InSAR 
utilizes two images acquired simultaneously by two receiver antennas installed on 
one platform (airplane or satellite). In this case, one antenna emits a signal and both 
antennas record received echoes. Along-track InSAR is used for generation of Digital 
Elevation Models (DEM). Since both images are acquired practically simultaneous 
the effect of temporal decorrelation is minimal and phase can be unwrapped 
precisely. Using this technique, the Shuttle Radar Topography Mission (SRTM) of 
NASA in early 2000 acquired SAR data and produced a DEM for the entire world 
(Farr and Kobrick 2000, Rabus, et al. 2003). The 90 m resolution SRTM DEM is 
freely available (http://srtm.csi.cgiar.org/). 
 
Across-track InSAR uses two images acquired at two different times. In this case, a 
DEM can be created as well but its quality will be reduced due to the effect of 
temporal and spatial decorrelation. The most common application of across-track 
InSAR is differential interferometry or DInSAR, as it was demonstrated for the first 
time in Massonet, et al. (1993). The goal of DInSAR is measuring movement of the 
ground over time caused by earthquakes and volcanic signals, subsidence due to 
extraction of groundwater, oil, or mining. This can be done by calculating an 
interferogram from two SAR images acquired at two different times and then 
subtracting the topographic phase recreated from an available DEM. The process of 
computing SAR differential interferograms consists of a few steps: image co-
registration, interferogram formation, removal of earth curvature and topographic 
phases, filtering and phase unwrapping. The last step, interferometric phase 
unwrapping, can be complicated or even impossible if the level of coherence is low. 
The decorrelation effect, or lost of coherence between two SAR images depends on 
land cover, temporal and spatial baselines and SAR wavelength. Among the 
currently operational SAR systems, decorrelation is the most significant  for X-band, 
moderate for C-band and minimal for L-band (Hanssen 2001). 
  
There are a few factors limiting the accuracy of interferometry, such as temporal and 
spatial decorrelation, and atmospheric and topographic noise. The decorrelation 
effect is perhaps the largest limitation, which has been partially overcome by 
developing a Permanent Scatterers (PS) technique (Ferretti, et al. 2000, Ferretti, et 
al. 2001, Samsonov and Tiampo 2011). By using the PS approach it is possible to 
calculate linear deformation rates, and even to reconstruct non-linear time series of 
each permanent scatterer (Ferretti, et al. 2000). This technique works best when a 
dense network of permanent scatterers is found, which is not often the case for many 
regions. In areas of moderate to good coherence it is possible to apply a stacking 
technique (Samsonov 2010, Sandwell and Price 1998) that produces mean 
deformation rates and also the Small Baseline Subset (SBAS) technique that 
produces non-linear time series as well as linear deformation rates (Berardino, et al. 
2002, Lanari, et al. 2004, Samsonov 2010, Samsonov, et al. 2011 in press). The 
SBAS technique works only on pixels that are coherent above a chosen threshold on 
all interferograms. In most favourable conditions, it is reasonable to expect precision 
equal to 1/4-1/2 of the satellite wavelength during the analysis of single 
interferogram. In case of PS or SBAS processing it is possible to achieve precision 
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better than a few mm of measuring displacements and a few mm/year of measuring 
deformation rates.  
 
Modern SAR sensors are capable of acquiring data of more than one polarization. 
Some sensors can be programmed to acquire data of various but single polarizations 
(ENVISAT), and other sensors can acquire data of all four polarizations 
simultaneously (HH,VV, HV, and VH – where ‘H’ = horizontal, and ‘V’ = vertical)  (e.g. 
Radarsat-2, TerraSAR-X, ALOS PALSAR). In the case of polarimetric data each 
polarization channel is stored in a separate file that can be processed individually. 
Some techniques such as polarimetric interferometry (PolInSAR) utilize all four 
polarization images simultaneously. 
 
Polarimetric interferometry is a most recently developed application of SAR (Evans, 
et al. 1988, Lee and Pottier 2009). Using various polarimetric decompositions applied 
to polarimetric data it is possible to classify individual (or small subgroup of) 
scatterers based on their back-scattering properties. In the most basic form it is 
possible to subdivide all scatterers into three categories: single bounce (flat surface), 
double bounce (man-made structures, tree trunks), and volume scatterers 
(vegetation) (Freeman and Durden 1998). The more advanced polarimetric 
classification methods have been developed that allow estimation the density of 
vegetation, surface roughness, and many other parameters (Cloude and Pottier 
1997, Lee and Pottier 2009, van Zyl 1989). However, it is important to remember that 
results of polarimetric analysis will depend on satellite wavelength and also incidence 
angle and sensor orientation (satellite heading). 
 
Space-borne SAR sensors are capable of acquiring SAR data over the same area 
with regular intervals (20-40 days). However, due to storage, processing and down-
link limitations of satellite only a fraction of the potential images is acquired. 
Acquisition of data by sensors owned by commercial organizations is usually 
guaranteed upon request by clients, but acquisition of data by sensors owned by the 
international space agencies can be missed due to higher priority requests taking 
precedence. Table 4 highlights some parameters that must be considered before 
ordering data. Often, the availability of historic data over a region of interest is the 
most significant limiting factor for selection of particular sensor. 
 
Table 4: Important parameters required for SAR and InSAR analyses 

Important 
parameters 

Description and Comments  Example  

Sensor wavelength  Critical parameter for many applications. Long 
wavelength data better penetrates vegetation, 
which is particularly important for InSAR over 
vegetated areas. 

Bands: X (~3 cm), 
C (~6 cm), and L 
(~25 cm) 

Polarization Choice of polarization depends on targets that are 
mapped. For InSAR processing cross-polarized 
images (HV and VH) are not suitable (except in 
special cases). 

HH,VV, HV, and 
VH 

Incidence angle For InSAR or for multi-temporal analysis all 
images should be acquired with similar incidence 
angle. Large angles will increase travel distance 
through vegetation and effect of volume 
scattering. 

20-50 degrees 

Image resolution Depending on application and coverage data with 
best resolution is preferred. 

from 1x1 to 
150x150 m  

Image size Inversely proportional to resolution due to from 25x25 to 
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Important 
parameters 

Description and Comments  Example  

technical limitations of satellite and data down-
link. Low resolution data has largest coverage. 

450x450 km  

Processing level RAW data can not be read by standard GIS 
software, SLC data is required for InSAR 
processing, geocoded data looses phase 
information (not suitable for InSAR) but preferred 
for GIS analysis. 

RAW, SLC, 
geocoded 

Critical baseline For InSAR analysis: baseline at which correlation 
between two SAR images disappears. For DEM 
generation images with large (but less than 
critical) baseline are needed, for DInSAR 
processing images with small baselines are 
preferred. 

for ERS satellite 
critical baseline is 
1150 m 

 
The Complete InSAR manual was published by the European Space Agency (InSAR 
Principles: Guidelines for SAR Interferometry Processing and Interpretation, TM-19) 
and can be freely accessed at http://www.esa.int/esapub/tm/tm19/TM-19_ptA.pdf 
(and also TM-19_ptB.pdf and TM-19_ptC.pdf). 
 
1.3 LiDAR 

 
Laser altimetry or LiDAR (light-detection and ranging) is an active remote sensing 
technique that can provide high resolution (< 1m) representations of the earth’s 
surface and it’s above ground features. Lasers are well suited to ranging applications 
as high-energy pulses can be produced in short intervals, and short wavelength light 
can be highly collimated using small apertures (Wehr and Lohr 1999, Young 1986).  
LiDAR systems employ such lasers to measure the distance between the senor and 
a target surface by calculating the elapsed time between the emission of a short-
duration laser pulse and the return signal of that pulse (Bachman 1979).  Laser 
pulses returned to a sensor are complex combinations of energy returned from 
surfaces at multiple distances, with the distant surface (ground) returned later in the 
reflected signal (Lefsky, et al. 1999).  Such measurements enable the three-
dimensional (3-D) representation of ground level, vegetation, power lines, buildings 
and other man-made features.  
 
LiDAR systems differ primarily in terms of the nature of the laser pulse (Figure 1). 
Full waveform LiDAR operates at very high frequencies and can delineate the full 
above ground profile. Discrete return systems are more widely used and return 
ground elevation as well as the above ground height of the first layer of 
vegetation/man-made structures that the laser strikes. Discrete return LiDAR has 
been utilized extensively in forestry applications and has been shown to reliably 
return ground elevation and tree height data in forested systems (Lefsky, et al. 
2002a, Lefsky, et al. 2002b). The vertical and horizontal accuracy of LiDAR is 
improving all the time and is a function of the sensor used, the type of aircraft (fixed-
wing airplane or helicopter), the flying conditions (wind), and the altitude at which the 
aircraft operates. For environmental applications, LiDAR is mostly commonly 
operated from a fixed-wing aircraft at altitudes of 1000-2000m, rendering elevation 
data at 0.5 m to 1 m spatial resolution. Because LiDAR is an active remote sensing 
technique and utilizes its own energy source, surveys can be conducted during the 
night and beneath high altitude cloud layers, conditions under which aerial 
photography and optical satellite imagery cannot be collected. Optech Inc. (Canada) 
and Leica Geosystems (Germany) are two of the leading manufacturers of LiDAR 
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sensors (ALTM and ALS sensors respectively), with current models capable of 
operating at 70 kHz or higher. At a flying altitude of ~1000 m this translates to the 
generation of digital terrain models (DTMs) at 0.5 m spatial resolution with ~10 cm 
vertical accuracy. The commercial availability of such systems has therefore enabled 
high resolution digital terrain mapping across large spatial areas, with a number of 
benefits for geological hazard assessment. 
 

 
 
Figure 1: Differences between full waveform and dis crete return LiDAR (after Lefsky et 
al 2002a) 
 
2 USING REMOTE SENSING FOR GEOHAZARD ASSESSMENT 

With such a broad topic area, it is impossible to cover all potential geological 
hazards, all remote sensing data types, and all possible processing techniques. 
Instead, this report focuses on a number of pre-defined geohazards of relevance to 
South Africa, and provides a brief overview of assessment techniques that use 
optical, LiDAR, and/or InSAR remote sensing. It is acknowledged that there are other 
data types and techniques that could be used, however these are considered to be 
outside the scope of the current review. 
 
Remote sensing can be used for geological hazard assessment in a range of 
different ways. In particular, it is noted that remote sensing can contribute to the 
assessment of likely risk of an event occurring, or in the assessment of damage post 
event. In this way, remote sensing can be linked explicitly to the different phases of 
the disaster management cycle (Joyce, et al. 2009c). In order to use remote sensing 
to help assess risk or vulnerability, it is necessary to identify either precursors to the 
event of interest, or specific related environmental characteristics that might make a 
particular location susceptible to that event. Post event damage assessment is 
potentially a more straightforward task. As the observation requirements will be 
different for both pre- and post-event assessment, the remote sensing data types and 
techniques will also be correspondingly different. Table 5 provides an indication of 
how the three main remote sensing data types (optical, LiDAR, and InSAR) may be 
used at the different assessment stages.  
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Table 5: Potential application of remote sensing to  geohazards. X – Data type can be 
used prior to event to map / measure / monitor prec ursor; O – Data type can be used 
post event to map / measure /monitor effect 
 

Hazard  Optical  LiDAR  SAR 
Landslides and slope instability X O X O XO 
Seismic hazard (natural or mining induced) O O XO 
Deformation associated with mining and water abstraction  O XO 
Sinkholes O O  
Tsunami O O O 
Erosion X O XO  
Problem soils X O   
Geochemical hazards O   

 
Although the above table identifies the potential for the different data types to be 
utilised in some aspect of assessment for each geohazard, successes reported for 
different methods are highly variable. Some areas can still be considered to be in the 
research domain, rather than operational, and there are many challenges still to be 
faced. The following sections outline how the different data types are currently used 
in pre- and/or post-hazard assessment, while directing the reader to the literature for 
further detail. Where the contribution of a particular data type is not considered to 
play a major role in the identification, mapping, or monitoring of a particular hazard, it 
is not written into that hazard’s subsection (e.g. optical data is not covered in §3.3 – 
deformation associated with mining and water extraction).  
 
2.1 Landslides and slope instability 

2.1.1 Optical 
 
Landslides can range in areal size from less than a square meter to millions of 
square meters. Additionally, they may be dispersed over a wide area. The 
combination of small spatial size and potentially large spatial extent provides a 
challenge for the selection of appropriate remotely sensed data and necessarily 
results in a compromise between spatial extent and spatial resolution. A sensor with 
moderate-high spatial resolution (eg. SPOT) may cover a relatively large spatial 
extent, but will not adequately characterise small landslides. It may be possible to 
detect a landslide as small as half a pixel if the spectral contrast is high, however it is 
not possible to accurately define its size or shape (Nichol and Wong 2005b). 
Alternatively, very high spatial resolution satellites (eg. Quickbird or Ikonos) or 
airborne imagery is costly and data intensive to acquire over large spatial extents. 
Ortho photography has demonstrated its utility for mapping landslides in detail, 
though IKONOS with pan-sharpening may provide equivalent if not superior results 
(Nichol and Wong 2005b).  
 
There are several studies in the literature about landslide detection, but few attempt 
or demonstrate an automated, repeatable technique, and even fewer provide an 
accuracy statement for their mapping. Visual interpretation (with and without on-
screen digitising of both two and three dimensional data) has been used in the past 
and is still proving to be a common and effective method of landslide mapping 
(Domakinis, et al. 2008, Kumar, et al. 2006, Nichol and Wong 2005a, Ostir, et al. 
2003, Singhroy 1995, Singhroy, et al. 1998, Voigt, et al. 2007). In a study comparing 
various techniques for landslide mapping, Joyce et al. (2008) determined that manual 
digitising was indeed the most accurate method of identification, however was not 
appropriate for large area or wide spread landslide mapping due to its time intensive 
nature. Manual digitising techniques benefit from the analyst’s knowledge of the area, 
but cannot be automated. Figure 2 shows the spatial distribution of landslides in 
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northern New Zealand following a major storm event. Given the number of landslides 
detected, and their widespread nature, it is clear that manual mapping methods 
would be inappropriate and a more automated approach is required. 
 

 
Figure 2: Landslide distribution based on analysis of SPOT-5 imagery after a major 
storm event in northern New Zealand. Landslide coun t is displayed as the number of 
landslides detected per 250 x 250 m grid cell (Joyc e, et al.  2009b). Background images 
were acquired by Landsat ETM+ and shown for context ual purposes only. 
 
Of the more automated approaches, the techniques and data types used have been 
many and varied: 

- Digital change detection using  
o Post-classification comparison in Hong Kong achieved an overall 

accuracy of 70% (Nichol and Wong 2005b); 
o Image differencing techniques appeared successful in Italy (Hervas, et 

al. 2003, Rosin and Hervas 2005), Taiwan (Cheng, et al. 2004), and 
New Zealand (Joyce, et al. 2008); 

o Change vector analysis was also used in Taiwan following NDVI 
calculation (Rau, et al. 2007); 

o Multi-date DEM surface comparison (Casson, et al. 2005, Chen, et al. 
2006b, Kaab 2002, Nichol, et al. 2006, Ostir, et al. 2003, Singhroy and 
Molch 2004, Tsutsui, et al. 2007). The stereo-viewing capability of 
several contemporary sensors (TerraSAR-X, ALOS-PRISM, SPOT, 
IKONOS, Quickbird) are capable of providing very detailed DEMs to 
use for this purpose. The technique of DEM differencing also allows 
volumetric calculation of erosion scars and debris.  

o Multivariate classification incorporating NDVI, principle component 
analysis (PCA) and independent component analysis (ICA) for high 
spatial resolution pansharpened imagery of both before and after 
event occurrence (Mondini, et al. 2011). 

o Unsupervised classification achieved 80% accuracy for landslides 
greater than 10 000m2 on slopes greater than 5° in New Zealand 
(Dymond, et al. 2006).  

o Textural classification combined with principle components analysis of 
very high resolution  airborne imagery achieved up to 90% overall 
accuracy (Whitworth, et al. 2005). 
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o Perhaps the most promising results are offered by segmentation and 
object oriented approaches, where significant increases in accuracies 
are reported when compared to spectral classifiers (Barlow and 
Franklin 2007, Barlow, et al. 2006).  

 
It is also possible to use remote sensing and other spatial data to provide information 
about many of the environmental characteristics known to increase landslide 
vulnerability. This in turn can help the development of landslide susceptibility maps 
and to improve understanding of landslide hazards in the landscape. The distribution 
of landslides with respect to geology, vegetation, and slope is clearly shown in Joyce 
and Dellow (2009). 
 
 
2.1.2 Synthetic Aperture RADAR 
 
The ability of SAR to image through cloud, and most rainfall events, makes it 
attractive for the reliable acquisition of imagery in the days following a storm induced 
landslide event, when information from remote sensing is likely to be highly valued 
for relief or assessment efforts. However, as with optical remote sensing, there is no 
distinct backscatter signature that can uniquely be associated with the mixed targets 
in a landslide. Instead, it is necessary to either use expert interpreter knowledge on a 
single scene, or estimate the backscatter-difference from a pre- and post-landslide 
event, and apply some threshold of change (Belliss, et al. 1998). 
 
While detecting backscatter difference is theoretically a straightforward task, there 
are some complications involved. First, if the images have slightly different viewing 
positions or different ground local incidence angles, then the scenes will exhibit an 
apparent change in brightness due to the difference in local incidence angle. This 
topographic difference can be corrected, provided a good DEM is available (Pairman, 
et al. 1997). Second, the inherent radar brightness of a target depends to a certain 
extent on land cover conditions on each date. Therefore, a difference-between-dates 
backscatter image might still show an overall brightness difference different from zero 
(i.e., false positive). This effect is exacerbated with shorter wavelengths. Finally, 
unless the pre- and post-landslide images tightly embrace the times of the landslide 
event, the difference-between-dates backscatter image will tend to falsely detect 
landslides that are simply due to land cover change – a problem that is similarly 
recognized with optical imagery. 
 
Differential interferometry is used to measure velocities and extent of slow-moving 
landslides (Hilley, et al. 2004, Rott and Nagler 2006). In case of lower coherence it is 
possible to deploy corner reflectors that would appear as bright targets in the  
interferograms, however, significant presence of tropospheric noise in mountain 
regions affected by landsliding will degrease the accuracy of interferograms making 
phase unwrapping impossible and sometime produce false signals that can be 
identified only by ground truthing. It is important to remember that using DInSAR 
technique it is possible to detect only line-of-sight motion. This means that landsliding 
in direction parallel to the sensor azimuth is not detectable (usually north-south 
motion), as well as the motion that has horizontal and vertical components of similar 
magnitude but of opposite direction (in relation to line-of-sight). The most favorable 
imagining configuration of landsliding motion is on the back slope (slope opposing 
the satellite), however, this is only possible when the slope angle does not exceed 
incidence angle of the sensor, otherwise, the area becomes shadowed.   
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2.1.3 LiDAR 
 
A map of slope failures is the primary element of landslide assessments as it is not 
possible to analyze the controls on mass movements, or their environmental and 
human consequences, without an accurate inventory of slope instability (McKean and 
Roering 2004). A high-resolution DTM is able to detect the divergence/convergence 
of areas related to both unchannelized and channelized processes with better detail 
than coarser DTMs (Tarolli, et al. 2010). As such, the use of LiDAR in understanding 
and mitigating the risks of landslides and slope instability has grown rapidly over the 
last ten years and is widely used to generate high quality DTMs for terrain analysis, 
map landslides and debris-flows, monitor mass movements, and refine surface flow 
models (Jaboyedoff, et al. 2010).  
 
High resolution shaded relief maps, built from LiDAR derived DTMs, have proved 
extremely useful for the delineation of landside morphological features (Ardizzone, et 
al. 2007, Corsini, et al. 2009, Eeckhaut, et al. 2007, Haugerud, et al. 2003). While the 
best mapping results are still achieved through manual digitization by expert users, 
significant progress has been made in automating the classification of landslides 
from high resolution DTMs. McKean and Roering (2004) developed an objective 
approach to mapping landslides from LiDAR data in Canterbury, New Zealand, 
through the analysis of power spectra which quantifies how roughness varies with 
scale. An expansion of this technique was successfully applied to coastal ranges of 
the Pacific North-western USA, where the automated technique achieved 82% 
classification accuracy (Booth, et al. 2009). Variogram analysis techniques have also 
shown potential in the Italian Alps (Trevisani, et al. 2009), while advances object-
based image analysis techniques continues to improve morphometric classification 
accuracies (Blaschke 2010, Dragut and Blaschke 2006). Although landslide scars 
can often be mapped from aerial or satellite  optical imagery, the real benefit of 
LiDAR in this regard emerges in forested systems where the ground surface is 
hidden from view yet high frequency lasers can still penetrate and map the 
underlying terrain (Reutebuch, et al. 2003). 
 
While the detection and classification of past and present landslides is an important 
step in understanding the risk of slope failures, LiDAR data can further aid landslide 
susceptibility mapping and modeling by providing high quality slope parameter data. 
LiDAR derived terrain parameters have greatly improved results from slope stability 
models, such as  SHALSTAB and TRIGRS (Casadei, et al. 2003, Dietrich, et al. 
2001, Godt, et al. 2008), and as such have increased the reliability of derived hazard 
maps (Haneberg, et al. 2009). The same is true for rockfall models, whereby the 
increased accuracy and resolution of LiDAR-derived DTMs improves trajectory 
modeling and enables the testing of different kinetic energy profiles and rockfall 
trajectories (Agliardi and Crosta 2003, Jaboyedoff, et al. 2010, Lan, et al. 2010). 
LiDAR can play a further role in hazard assessment by helping to keep track of slow 
moving mass movements. Monitoring movements over time requires a time series of 
LiDAR data so that the resulting DTMS can be differenced to explore changes in 
morphological structure and volume over different time periods (Baldo, et al. 2009).  
 
2.2 Seismic hazard (natural or mining induced) 

2.2.1 Optical 
 
The increasing availability of high-quality optical satellite images enables, in principle, 
the continuous monitoring of Earth’s surface changes (Leprince, et al. 2008). Optical 
satellite imagery and aerial photography can capture information on horizontal 
displacements in the earth’s surface, provided that pre- and post-event images are 
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available, and that both sets of images can be precisely ortho-rectified. A software 
package (COSI-Corr) was developed at California Institute of Technology to facilitate 
the precise co-registration of optical images and conduct sub-pixel correlation 
analyses (Leprince, et al. 2007a) Ayoub et al. (2009) used COSI-Corr to co-register 
and correlate multi-temporal images for the measurement of ground deformation 
following the 1992 Mw 7.3 and 1999 Mw 7.1 earthquakes in California. The principles 
for this technique have also been successfully applied with  SPOT imagery (Barisin, 
et al. 2009, Leprince, et al. 2007b) and ASTER imagery (Avouac, et al. 2006) to 
measure horizontal ground displacements following seismic events. While useful in 
its own right, this technique can be coupled with synthetic aperture RADAR to 
measure both horizontal and vertical displacements (Barisin, et al. 2009). 
 
2.2.2 Synthetic Aperture RADAR 
 
Differential SAR interferometry is possibly one of the best techniques used for 
mapping ground deformation produced by earthquakes (i.e. post event). Differential 
interferometry (DInSAR) calculates the phase difference between two SAR images 
acquired over the same area at two different times (Massonnet and Feigl 1998, 
Rosen, et al. 2000). The accuracy of this technique depends on data type and its 
quality: wave-band, perpendicular and temporal baselines, ground conditions (such 
as vegetation and snow coverage), tropospheric and ionospheric noise. In the most 
favorable conditions it is possible to achieve accuracy 1/4-1/2 of SAR wavelength. 
This accuracy is sufficient for mapping ground deformation of moderate earthquake 
(M5 and up) depending on the depth of the epicenter. Often DInSAR data is analyzed 
together with GPS data that has sparse spatial resolution but acquired frequently and 
other data from strain-meters, ground leveling, tilt-meters and so on. 
 
When the goal is to map ground deformation caused by a single event such as an 
earthquake, two images acquired before and after the earthquake are required. In 
order to reduce decorrelation effect and sensitivity to residual topography it is 
recommended to select SAR images with smallest spatial (particularly perpendicular) 
and temporal baselines, and similar Doppler centroids. In case of vegetated land 
cover the sensor with longer wave length will produce more coherent results but with 
less precision since precision is inversely proportional to the sensor's wavelength. 
Deformation caused by earthquake in case of good coherence will be observed in 
areas where displacement  between neighboring pixels does not exceed half of the 
sensor wavelength. If deformation gradient is larger than this critical value then 
phase unwrapping becomes impossible. Therefore, in order to map motion in the 
proximity of the ruptured area it is necessary to utilize data from sensors with longer 
wavelength (for example, L-band ALOS PALSAR). Another possibility is to employ 
offset tracking technique (Strozzi, et al. 2002). In this case offsets between highly 
coherent (or bright) coregistered pixels are measured directly, which then are 
converted to displacement map without need for phase unwrapping. The precision 
and coverage of offset tracking technique is significantly less than of standard 
DInSAR and depends on the accuracy of co-registration of two SAR images, but this 
technique is very valuable in case of large displacements and/or low coherence. 
 
It is important to remember that magnitude of displacement produced by the 
earthquake can not be easily converted to damages caused by the earthquake. As 
an example, slow slip events produce deformation similar to earthquakes but do not 
cause any damages (McCaffrey, et al. 2008). On the other side, earthquakes that 
produce limited deformation can cause significant amount of damages. This was the 
case for the M7.1 Darfield earthquake  (4 September 2010) that produced significant 
static displacements (Figure 3 )but caused only minor damages (Beavan, et al. 2010) 
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and M6.3 Canterbury earthquake (22 February 2011) that produces significantly 
smaller static displacements but caused severe damages to Christchurch. 
 
DInSAR can also successfully map inter-seismic and post-seismic deformation that 
are of smaller magnitude than co-seismic signals (Argus, et al. 2005, Fialko 2006) 
utilizing advanced processing strategies such as PS and SBAS described below. 
 

 
Figure 3: Example of a differential interferogram f rom the M7.1 Darfield earthquake 
which occurred on 4 September, 2010 in New Zealand (modified from Beavan et al 
(2010)). ALOS PALSAR images were acquired on 13 Aug ust and 28 September, 2011. 
Ground displacement between neighbouring fringes is  about 12 cm. Background 
images were acquired by Landsat ETM+ and shown for contextual purposes only. 
 
2.2.3 LiDAR 
 
Understanding the spatial distribution and orientation of fault lines is fundamental to 
understanding seismic risk in a landscape. However, even in areas of known 
seismicity, these faults can be difficult to locate due to inaccessible terrain or their 
location being obscured by dense vegetation (Harding, et al. 2000). LiDAR is able to 
lift the vegetation mask off the land surface and provide a view of the terrain under 
even dense vegetation canopies (Reutebuch, et al. 2003), providing a useful tool for 
mapping fault line traces. Harding et al. (2000) demonstrated the ability of LiDAR to 
map terrain underlying forests of Puget Sound in Washington State, revealing 
geomorphic features associated with fault strands within the Seattle fault zone. 
These features included a previously unrecognized fault scarp, an uplifted marine 
wave-cut platform, and tiled sedimentary strata. Since then, the use of LiDAR for fault 
scarp mapping has gained much momentum and is being used across the globe to 
increase seismic insights (Arrowsmith and Zielke 2009, Cunningham, et al. 2006, 
Engelkemeir and Khan 2008, Haugerud, et al. 2003, Kondo, et al. 2008, Prentice, et 
al. 2010, Zielke, et al. 2010). In Canterbury, New Zealand, LiDAR was recently used 
to map the surface expression of the previously unknown Greendale Fault following 
the 2010 Mw 7.1 earthquake (Quigley, et al. 2010) (Figure 4). 
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Figure 4: LiDAR derived hillshade view of a short s ection of the Greendale Fault, 
Canterbury New Zealand, revealing the rupture patte rn. LiDAR data were acquired by 
NZ Aerial Mapping. The background image displays th e InSAR imagery from Figure 3, 
and shows the difference in scale and detail of ima ge acquisition. 
 
The application of LiDAR to seismic hazards extends beyond geomorphic feature 
mapping of historic events. As LiDAR data is becoming more widely used and 
increasingly available, so too is the potential of using time series LiDAR for assessing 
seismic induced changes to the land surface (Chen, et al. 2006a) and infrastructure 
(Li, et al. 2008, Rathje and Adams 2008). 
 
2.3 Deformation associated with mining activities a nd water abstraction 

 
2.3.1 Synthetic Aperture RADAR 
 
Deformation due to ground water extraction and mining as well as inter-seismic and 
post-seismic signals are harder to measure because these deformations are usually 
much slower and often of the similar magnitude as various noises that affect DInSAR 
measurements. In order to accurately measure a deformation signal, all sources of 
noise have to be estimated and if possible compensated for. In the case of good 
coherence, the noise caused by atmospheric disturbances mixed with residual orbital 
rams (caused by minor inaccuracies in estimation of platform orbit) is the single 
significant factor limiting the accuracy of interferograms. Strictly speaking it is 
impossible to distinguish atmospheric signal from a deformation signal in a single 
interferogram. This is because apparent displacements observed in interferograms 
are proportional to the travel time and velocity of electromagnetic waves, and velocity 
varies within the interferogram depending on the state of the atmosphere, in 
particularly the amount of water vapour in the troposphere and the amount of free 
electrons in the ionosphere. The ionospheric noise is particularly significant for long 
wavelength sensors and depends on the time of acquisition (day vs night) and the 
state of solar activity. 
 
The practical way to improve precision of DInSAR measurements is to employ 
statistical analysis and advanced processing techniques based on data redundancy. 
The best known approach is the Small Baseline Subset Algorithm (SBAS) that 
reconstructs a time series of deformation from set of coregistered interferograms 
(Berardino, et al. 2002). More advanced algorithms (e.g. Samsonov et al. (2011 in 
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press)) are designed to compensate for orbital ramps, residual topographic errors, 
and minimize atmospheric contribution by averaging large set of interferograms and 
multi-looking (spatial averaging). 
 
In the case of lower coherence, it is possible to employ Persistent Scatterers (PS) 
interferometric analysis (Ferretti, et al. 2004, Ferretti, et al. 2001, Samsonov and 
Tiampo 2011). The processing methodology is similar to standard DInSAR but it is 
applied only to a few pixels that behave coherently over long period of time. Such 
pixels are selected based on amplitude dispersion, coherence or polarimetric 
properties. Finally, some techniques combine PS and SBAS approaches (e.g. 
StaMPS, (Hooper, et al. 2004)) into one processing scheme that in some cases 
produces better results than other techniques. The precision of measurements in 
advanced processing is proportional to the number of images and under favourable 
conditions can be very high (better than a few mm). 
 

 
Figure 5: Average rate of ground deformation for th e Auckland Volcanic Field, New 
Zealand occurred during 2003-2007 from Small Baseli ne Subset Analysis (modified 
from Samsonov et al.,  (2010)). It was determined that subsidence is caus ed by 
withdrawal of ground water for irrigation and indus trial needs. Background images 
were acquired by Landsat ETM+ and shown for context ual purposes only.  
 
2.3.2 LiDAR 
 
Theoretically, airborne LiDAR has the potential to measure ground deformation 
associated with mining and water abstraction, though very few studies have utilized it 
for this purpose. The degree of deformation associated with water abstraction occurs 
on scales more relevant to SAR techniques which can derive millimeter accuracy 
under the right conditions. Furthermore, the costs of obtaining a long time series of 
airborne LiDAR are very high in comparison to SAR imagery. 
 
2.4 Sinkholes 

2.4.1 Optical 
 
Fewer remote sensing related studies have been reported on sinkholes than many of 
the other geohazards discussed in this report. This may be due in part to the lack of 
success in using remote sensing for identifying these features and/or their 
precursors; the relatively small spatial extent of individual features, meaning that 
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remote sensing is not necessarily required; or it genuinely being an area of research 
yet to be fully explored. Warren and Wielchowsky (1973) hinted on the potential for 
using airborne optical remote sensing and manual interpretation for identifying 
sinkholes, even citing the importance of colour infrared imagery for the benefits that 
the NIR band provides in vegetation analysis. However, they did not provide any 
quantitative results, and a long time has elapsed with curiously little further 
development in this field in the literature. Dinger et al. (2006) had mixed successes 
using aerial photography to identify sinkholes in an agricultural setting by assuming 
that vegetative stress could be used as a proxy for sinkhole location. This would 
seem to be a valid approach, but their findings were unconvincing.  
 
2.4.2 Synthetic Aperture RADAR 
 
SAR has experienced broader use for sinkhole subsidence analyses, given its ability 
to resolve subsidence at the millimeter scale under the right conditions. However, 
effective use of InSAR requires a spatially continuous deformation field, so if the 
sinking is spatially gradual, then it can be detected, however if it is spatially abrupt, 
i.e. a failure with sharp boundaries as is so often the case, then subsidence produced 
by sinkhole cannot be greater than half of the wavelength of the sensor used (2-10 
cm) for it to be properly detected due to ambiguities in phase unwrapping. In addition, 
if the sinkhole is relatively small, it becomes difficult to detect using contemporary 
satellite systems based on their spatial resolution. 
 
Also SAR can be used in a similar manner as an optical sensor - by comparing 
backscatter intensities before and after sinking (after should be lower, darker on the 
image). In some cases interferometric coherence can be lower due to changes in 
land cover caused by sinking, but it assumes that coherence before sinking was high, 
which is not always the case (for example, in densely vegetated or snow covered 
regions). 
 
2.4.3 LiDAR 
 
High resolution terrain models generated from LiDAR can be used to locate sinkholes 
and estimate subsidence rates (Gutiérrez, et al. 2008, Waltham, et al. 2005), 
however it has not been broadly applied for this purpose as rates of subsidence are 
often within the error limits of even low altitude and high density airborne LiDAR 
collections. Seale et al. (2008) and Vacher et al. (2008) found that LiDAR alone could 
not be considered a reliable technique for mapping sinkholes in urbanized covered 
karst in Florida, but results improved greatly when used in conjunction with aerial 
photography.  
 
2.5 Tsunami / Flooding 

Using remote sensing for mapping and monitoring tsunami related impacts or 
precursors has received considerably more attention in recent years following the 
Indian Ocean event in 2004. An increasing number of studies are also likely to 
emerge following the devastating and wide reaching impacts of the tsunami in March 
2011 subsequent to the earthquake in Japan. In terms of post event surveillance, 
there is nothing in particular that is unique to a tsunami that wouldn’t be conducted 
for monitoring areas devastated by other forms of inundation such as cyclone 
induced flooding and associated destruction. As such, the post event ‘effect’ mapping 
discussed herein will not be isolate to tsunami related damage, but will consider 
flooding as all-encompassing. 
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2.5.1 Optical 
 
Generally the most effective damage assessment relies on some form of multi-
temporal analysis or change detection. Without knowledge of the baseline state of a 
particular location, it is near impossible to ascertain whether an observed feature is 
the result of an impact of sorts. For example, inland water should only be considered 
‘flood’ if the baseline state of that location was once dry. As such, flooding and 
associated damage assessment techniques employ multi-date remote sensing data. 
The processing techniques can then range from post classification change detection, 
to multi-date classification (Roemer, et al. 2010), spectral index differencing (Kouchi 
and Yamazaki 2007, Yang, et al. 2007), or simple manual interpretation (Belward, et 
al. 2007, Kumar, et al. 2007, Wikantika, et al. 2007). Note that it is also possible to 
use SAR backscatter data in a similar way to optical data when employing these 
techniques (Bovolo and Bruzzone 2007). Note also that damage assessment of 
buildings and infrastructure using nadir imagery may not provide completely accurate 
information, as damage identification may be limited to determination of roof 
structural damage (for example). In actual fact, a building may be condemned without 
having roof damage, or conversely may still be structurally sound despite roof 
damage. 
 
When considering pre-event techniques for detection, remote sensing can be used to 
observe wave height and direction of travel, and therefore may provide a means to 
guide evacuation and early warning if the source of the tsunami is far from the coast 
that it is likely to impact. Satellite altimetry (e.g. JASON / GRACE) offers the potential 
to capture wave height and direction information (Gower 2007), though is limited in 
the temporal domain. It can therefore only be useful if it captures data by chance. 
MISR has also shown promise for estimating wave speed and location (Garay and 
Diner 2007). 
 
2.5.2 Synthetic Aperture RADAR 
 
SAR would appear to be an ideal sensor for the detection of extensive flooded areas 
associated with tsunami, since the backscatter signature of water is so distinctive 
compared with that of vegetation (Lewis, et al. 1998). Spectacular examples of the 
use of SAR include the April 1997 Red River flood near Winnipeg, Canada (Bonn 
and Dixon 2005), and the Mississippi flood of 1993 (Nazarenko, et al. 1995). The 
basic underlying assumption in these cases is that the floodwater remains visible for 
a sufficiently long period of time to allow for acquisition of imagery and subsequent 
delineation of the flood boundary, which was certainly the case in these two major 
flood events. For floods associated with storm events in high-slope areas, such as 
the February 2004 Manawatu floods in New Zealand (Fuller and Heerdegen 2005), 
the floodwater does not remain visible for longer than a few days as a target as such, 
although the devastating effects of such an event are clearly visible for a great deal 
longer than this. 
 
SAR backscatter intensity and InSAR coherence can be successfully used together 
for mapping of regions affected by flooding. In Oberstadler et al. (1997) it was shown 
that flooded areas appear darker on ERS SAR intensity images and, therefore, 
comparing two images before and during flooding it is possible to map flooded areas 
with a high degree of accuracy. By combining SAR data and other GIS data such as 
DEMs, it is also possible to estimate the depth of water in flooded regions. InSAR 
coherence can also be used for the same purposes (Geudtner, et al. 1996). This 
technique maps coherence of a SAR pair of images acquired before and during 
flooding and comparing it to a pair of SAR images that both are acquired before 
flooding. Areas affected by flooding have significantly lower coherence than dry 
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areas and by subtracting both coherence maps it is possible to identify these areas 
easily.  
 
One of the unique features of SAR is the ability to detect areas of flooding under 
closed-canopy vegetation. Areas of flooded vegetation show with enhanced 
backscatter, due to the corner-reflector effect formed from the vegetation and the 
smooth water surface. The effect is wavelength- and vegetation-dependent, with 
short-wavelength (X- and C-band) sensitive to flooding under grasses (MacDonald, 
et al. 1980), mid-wavelength (S-band) sensitive to flooding under reed and brush 
vegetation (Lewis, et al. 1998), and long-wavelength (L- and P-band) sensitive to 
flooding under trees (Imhoff, et al. 1987). This phenomenon has been long known 
with wavelengths as short as K-band (Waite and MacDonald 1971), and has been 
explained by a comprehensive model (Ormsby, et al. 1985). As in the case of the 
SAR detection of landslides above, successful detection of flooded areas under 
vegetation requires some visual interpretation experience, or the assistance of a 
scene gathered before the flooding in order to make a comparison. 
 
2.5.3 LiDAR 
 
Although tsunamis are triggered by instantaneous events that may not as yet have 
identifiable (and undebatable) precursors (e.g. tectonic plate movement, submarine 
‘landslides’), it is possible to use remote sensing for identifying areas of hazard 
vulnerability using models of wave propagation and likely sources. The primary 
application of LiDAR to tsunami and flood hazard assessments is the provision of 
high resolution digital terrain data. A high quality DTM is invaluable in defining 
geomorphological features and modeling the flow of water through a landscape 
(Jones, et al. 2007, Marks and Bates 2000) as surface elevation constitutes one of 
the most important model boundary conditions (Schumann, et al. 2008). The 
accuracy and spatial resolution of LiDAR allow the identification of subtle topographic 
variations between adjacent flood compartments, and even when the effect on 
modeled hydrodynamics is minor, improved topographic parameterization is 
important in that it allows modelers to concentrate on the physical aspects of model 
performance (French 2003).  
 
Schumann et al. (2008) illustrated the benefits of using LiDAR derived terrain data to 
predict  water stages over contour and SRTM products, and Horritt and Bates (2001) 
found that predicted flood wave travel times are strongly dependent upon terrain 
model resolutions. Although the creation of bare earth models is the most common 
application of LiDAR to flood modeling, LiDAR data can also be used to model 
vegetation, building and other above ground features. As such, digital surface models 
(DSMs), which are derived from all of the LiDAR returns and not just the ground 
points, can be used to improve flow models by providing measures of flow friction 
and resistance (Mason, et al. 2003). Webster et al. (2004) highlighted the importance 
of accurate point cloud classification in the LiDAR processing chain, as the miss-
classification of points into ‘ground’ and ‘non-ground’ classes can strongly impact 
flood model results. While LiDAR has some clear advantages in the realm of flood 
modeling, it’s important to note that the fusion of LiDAR with other forms of data can 
yield better results. Zwenzner and Voigt (2009), for example, illustrated how the 
combination of high resolution SAR data and a LiDAR derived DTM allowed the 
derivation of higher level flood parameters such as flood depth estimates. 
 
The application of LiDAR to assessing and mitigating tsunami risk incorporates the 
exploration of historic events and aiding the modeling of future events. High 
resolution terrain models derived from LiDAR can reveal geomorphic features which 
provide insight into past and present events. For example, a LiDAR survey along the 
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Otago coastline of New Zealand revealed geomorphology consistent with a history of 
tsunami inundation (Goff, et al. 2009). High-resolution topographic data along 
coastlines, estuaries sand lagoon enable tsunami modelers to develop better hazard 
maps of potential tsunami inundation. Furthermore, the delineation of coastal 
vegetation and building structures from LiDAR returns facilitates the inclusion of 
advanced hydraulic parameters in coastal inundation models (Cheung, et al. 2011). 
 
2.6 Coastal, beach, and terrestrial erosion 

 
2.6.1 Optical 
 
The factors involved in erosion susceptibility of a landscape are relatively well 
understood and include: ground cover (vegetation types or lack thereof); 
topographical factors (slope, aspect); climatic effects (wind, water, ice); and the 
physical characteristics of the weathered material itself (particle size, compaction, 
organic matter). Remote sensing can therefore be used to provide information about 
several of these factors, and combined with additional spatial data to create 
predictive models of potentially hazardous terrains (Krishna Bahadur 2009, 
Prasannakumar, et al. 2011). In particular, optical remote sensing is well recognised 
for provision of ground cover or vegetation information as is evidenced by the 
number of operational projects around the world that use satellite data for creating 
baseline landcover maps. The presence or absence of organic matter can be seen 
as an indicator of soil erosion, and it has also been shown to be effectively mapped 
using Landsat imagery and spectral unmixing techniques without the requirement for 
hyperspectral data (Hill and Schütt 2000). High resolution LiDAR imagery could also 
be combined with optical data to provide information relating to the topographical 
factors of a site (see below). 
 
Many of the techniques for identifying that erosion has already occurred are similar to 
those already discussed for post-event landslide mapping (see §2.1.1). This is 
because under both scenarios, frequently the identifying factor is exposed soil or loss 
of vegetation. The use of Landsat data and multispectral indices still proves to be a 
simple and cost-effective way of identifying and mapping eroded landscapes (Chen 
and Gillieson 2009, Manyatsi and Ntshangase 2008). Alatorre and Beguería (2009) 
have also shown that supervised classification of Landsat imagery without the need 
for spectral indices is sufficient for identifying areas of erosion potential. However, as 
with landslide detection, it is not possible to solely use single date spectral 
information to determine if an area has been eroded or not – it is the change in the 
landscape that proves vital for this identification. Thus contextual knowledge and/or 
multi-temporal data are required to effectively identify the effects of erosion in the 
landscape. 
 
2.6.2 LiDAR 
 
High resolution DTMs derived from LiDAR can be utilized for the mapping and 
characterization of geomorphic features associated with and indicative of erosion 
processes (Anderson and Croft 2009, Ritchie, et al. 1994). If a time series of LiDAR 
data is collected, the resulting DTMs from multiple time periods can be differenced to 
calculate the volume of soil eroded from a system for that period. This approach was 
successfully employed along the Blue Earth River in Minnesota, where changes in 
the river bank were calculated between 2001 and 2002 to reveal a volumetric loss of 
over 280 000 m3 (Thoma, et al. 2005). 
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2.7 Problem soils (shrink/swell clays and acidic so ils) 

2.7.1 Optical 
 
It is known that certain types of clays are prone to shrinking and swelling as a result 
of moisture content (e.g. smectites), whilst others are not (illites and kaolinite). 
Necessary for effective remote sensing is the ability to detect differences in the 
spectral reflectance profiles between these different types of clays, as this permits 
mapping of potentially hazardous soils over a broad scale using satellite or airborne 
image data. It has been demonstrated that these spectral differences do exist, and 
are detectable using field spectrometer data in the range of 1800 – 2400 nm with a 
minimum spectral resolution of 10 nm, using derivative analysis (Goetz, et al. 2001). 
This foundation study was crucial in providing the spectral requirements necessary 
for future mapping endeavours. 
 
Identification of problem soils is limited to optical analysis in areas devoid of (or with 
considerably low) vegetation or other ground cover (e.g. infrastructure) (Chabrillat 
and Goetz 2006). This is therefore severely restrictive in terms of an application, 
particularly if there is an area of interest that has already been settled and developed. 
On the positive side however, is that it is unlikely that the physical and chemical soil 
properties giving them a potentially hazardous nature will change over short periods 
of time. As such, the temporal resolution of imagery is irrelevant. This is particularly 
important, as one of the most useful data sets for soil and mineral analysis is ASTER, 
which unfortunately experienced degradation of the SWIR detectors, rendering all 
SWIR bands useless since April 2008. However, if the soil composition is time-
independent, then it is possible to utilise older datasets to perform the required 
analysis. ASTER has proven useful for a two step identification of shrink-swell clays, 
firstly by mapping soil moisture, and then by following up with clay identification 
based on spectral libraries and supervised classification techniques (Bourguignon, et 
al. 2007). The strength of ASTER for soils and minerals mapping has always been 
with the five SWIR bands that it offered, which remains unmatched by any other 
multispectral satellite sensor.  
 
Similar techniques were also employed using airborne hyperspectral data (HyMAP 
and AVIRIS), acknowledging the fact that clay soils have characteristic absorption 
features in their spectral profiles  between 2200 nm and 2350 nm (Chabrillat, et al. 
2002). The high spectral resolution nature of these datasets affords more detailed 
mapping, even down to a sub-pixel level, by estimating the abundances of identified 
materials (endmembers) within each pixel. Note that this study also reports a level of 
success in areas of up to 50 % vegetation cover, however the actual accuracy of clay 
soil detection is not reported. The disadvantage of this technique is that it requires 
the availability of high spectral resolution imagery, which is often extremely costly to 
both acquire and process. 
 
2.8 Geochemical hazards (both natural and anthropog enic) 

2.8.1 Optical 
 
Using remote sensing for geochemical hazard assessment relies not on the 
identification of the hazardous element itself, but on the effect of that element in the 
local environment. This is because individual hazardous elements may not 
necessarily have a distinctive or unique surface expression. In this case, it is 
necessary to first establish causal relationships between the excessive presence (or 
indeed deficiency) of a particular element, and the surface expression of some sort of 
environmental change. The change is often related to the health or vitality of local 
vegetation. In Maya and Cloete (2011), a number of known hazardous elements are 
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detailed, along with their effects on vegetation. Effects such as leaf senescence, 
discolouration, or vegetation mortality, are all relatively easy observations to make 
when using optical imagery of an appropriate spatial scale with sufficient spectral 
resolution. Even using single band NIR data or a simple NDVI spectral transform has 
proven to be sensitive enough to detect vegetation health, related to Copper and 
Nickel (Rastmanesh, et al. 2010, Tommervik, et al. 1994). 
 
2.9 Summary of data types and processing techniques  

 
As is clear from the previous sections, there are a number of different techniques 
used for hazard assessment. These are dependent on the data sources and the 
specific application. A number of the potential processing techniques for geological 
hazard information extraction are summarised in Table 6, which also includes the 
advantages and disadvantages of each method. 
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Table 6: Remotely sensed data types and image proce ssing techniques for information extraction about g eological hazards (adapted from Joyce 
et. al (2009a)) 

Data Type 
Sensor 
Examples 

Technique Application Advantages Disadvantages 

Multispectral 
high to 
moderate 
spatial 
resolution 

Ikonos, 
Quickbird, 
SPOT, 
ASTER, 
ALOS 

Manual 
interpretation 

Infrastructure and 
property damage 
due to flooding, 
earthquakes, 
landslides etc. 

Benefits from analyst's knowledge 
of the area in addition to other 
interpretation cues such as context, 
site, association, shape, size; 
Immediate vector output file 

Can be subjective, time-consuming for 
widespread events, and non repeatable 

Spectral 
classification 

Location and extent 
of flooding, 
landslides, 
identification of 
certain soil 
characteristics (e.g. 
clay) 

Relatively rapid to apply over a 
large area 

Non-unique spectral response values, may 
require additional manual editing, 
appropriate algorithm must be selected for 
optimal result 

Semivariogram 
analysis and 
other textural 
classifiers 

Damage due to 
earthquakes; 
location of 
landslides 

May be useful when spatial 
resolution is lower than desired 

Only returns relative damage estimates 

Image 
thresholding 
(including band 
ratios) 

Location and extent 
of flooding, 
landslides, 
identification of 
water-logged soils 

Simple and rapid to apply, band 
ratios reduce illumination variability, 
can be applied with panchromatic 
data 

Determination of threshold values may be 
subjective 

Image 
differencing 

Location and extent 
of flooding, 
landslides, volcanic 
debris, fire scars 

Can be conducted on panchromatic 
data, band ratios or SAR 
backscatter imagery 

Requires before and after imagery that is 
accurately co-registered and radiometrically 
balanced, only takes the spectral 
information from a single band (though this 
may be a ratio combination), all changes 
will be identified regardless of their 
relevance to the part0069cular natural 
hazard (eg, crop rotations); still need to 
determine a threshold of change 
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Data Type Sensor 
Examples 

Technique Application Advantages Disadvantages 

Post -
classification 
change 
detection 

Location and extent 
of flooding, 
landslides, volcanic 
debris, fire scars 

Does not require radiometric 
calibration between multiple images 

Requires before and after imagery that is 
accurately co-registered, all changes will be 
identified regardless of their relevance to 
the particular natural hazard (eg, crop 
rotations), requires classification to also be 
completed on ‘before’ image 

DEM generation DEM is used as a 
supplementary 
information in 
variety of studies 

Photogrammetric methods can 
provide very high resolution DEMs 
in the absence of LiDAR 

Stereo imaging is not automatically 
acquired so may not be available; DEM 
creation software is not standard in image 
processing packages - ie costs extra, 
derived elevation is based on vegetation 
rather than ground height, no data in cloudy 
areas 

SAR JERS-1, 
ERS-1/2, 
ENVISAT, 
ALOS 
PALSAR, 
TerraSAR-X, 
Radarsat-1/2, 
Cosmo-
SkyMed 

Coherence Change detection 
due to landsliding, 
flooding, fire, etc. 

Provides quantitative estimation of 
ground changes  

Does not work well in densely vegetated 
regions, affected by seasonal changes, 
accuracy decreases with time  

Backscatter 
intensity 

Change detection 
due to landsliding, 
flooding, fire, etc. 

Can be used in cloudy conditions, 
side-looking acquisition geometry is 
beneficial for certain applications  

Quantitative analysis is complicated and 
varies significantly for different regions, may 
be difficult to interpret for non-experienced 
end-users  

Interferometry/ 
DEM generation 

DEM is used as 
supplementary 
information in 
variety of studies 

Independent of weather conditions Accuracy depends on acquisition geometry, 
wavelength and coherence, side-looking 
acquisition geometry creates distortion and 
shadowed areas 

Differential 
interferometry 

Surface 
deformation due to 
tectonic activity or 
ground water 
extraction; Velocity 
and extent of slow 
moving landslides 

High precision, high resolution of 
some new sensors 

Dependent on spatial baseline and DEM 
accuracy; cannot determine difference 
between vertical and horizontal 
components, high accuracy only available 
in areas without dense vegetation 

Polarimetry Land cover 
classification and 

Ability to detect features that are 
not visible on optical images, side-

Dependent on type of land cover and 
seasonal changes   
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Data Type Sensor 
Examples 

Technique Application Advantages Disadvantages 

change detection looking acquisition geometry 

DEM PALSAR, 
LiDAR, 
TerraSAR-X 

DTM 
differencing 

Volume of landslide 
related earth 
movement, Fault 
locations and 
elevation 
displacement, 
tsunami and flood 
inundation zones 

 Provides quantitative estimation of 
volumetric depositions and ground 
change 

Requires imagery both before and after 
event to be accurately co-registered 

Ikonos, 
Quickbird, 
SPOT 

 Photogrammetric methods can 
provide very high resolution DEMs 
in the absence of LiDAR 

Stereo imaging is not automatically 
acquired so may not be available; DEM 
creation software is not standard in image 
processing packages - ie costs extra, 
derived elevation is based on vegetation 
rather than ground height, no data in cloudy 
areas 

Airborne 
LIDAR 
sensors, 
SEASAT 

Manual 
interpretation 

  Very high horizontal and vertical 
resolution, can give accurate 
surface elevation (rather than tree 
heights) 

Acquisition of LiDAR is expensive and 
takes a considerable amount of time to 
process 
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3 CONCLUSIONS AND RECOMMENDATIONS 

This report has summarised a number of different remote sensing data types and 
processing techniques relevant to the identification, mapping, and monitoring of 
geological hazards. The hazards of interest were determined to be those of 
relevance to South Africa and were pre-defined as landslides and slope instability; 
seismic hazard (natural or mining induced); deformation associated with mining and 
water abstraction; sinkholes; tsunami; erosion; problem soils; and geochemical 
hazards. The remote sensing data types were limited to optical, LiDAR, and synthetic 
aperture RADAR (more specifically, InSAR techniques). 
 
It was identified that geological hazard assessment can focus either in the period 
leading up to a hazard event occurring, or in the time that passes post-event. The 
remote sensing requirements will be very different for pre- and post-event 
assessment. In the case of the former, it is necessary to identify specific precursors 
or environmental features that render a particular location susceptible to a potential 
hazard, which can then be monitored and built into models for estimating 
vulnerability. In the case of the latter, the assessment focus on the will be on the 
effect of that hazard and the environmental change at the location of interest. It is 
therefore necessary to consider both the hazard type and assessment phase before 
making any decision on remote sensing requirements for data acquisition and 
processing. 
 
Remote sensing has played a role in the assessment of each of the hazards 
identified, but its level of application and indeed provision of accuracy varies greatly. 
For example, InSAR is well recognised for the role it plays in assessment of 
deformation due to mining, water abstraction, or seismicity, and may be considered 
to be close to operational status. However in other fields it is either less effective, or 
further research should be conducted (e.g. erosion and sinkholes). The use of optical 
data for soil and mineral assessment has proven effective on many occasions in 
areas devoid of vegetation and thus holds great potential for identifying shrink/swell 
clays. In addition, a particular strength of optical remote sensing is in vegetation 
monitoring. Baseline information in landcover is well developed and operational 
globally. This is essential for modelling erosion and slope stability, while changes in 
vegetation health over time may be indicative of a sinkhole or geochemical hazard – 
both applications that could be areas of fruitful research in the future. Airborne LiDAR 
is particularly useful for providing highly detailed elevation data that can be used in 
relation to modelling a number of geological hazards including tsunami / flooding 
inundation, slope stability, erosion, and seismic hazards (fault identification), however 
it remains a high cost solution. Future research into the enhancing the utility of LiDAR 
could focus on determining the value of lower spatial resolution satellite systems. 
 
It is clear that there is considerable scope for further revision of remote sensing data 
processing techniques in the field of geological hazard assessment. In particular, 
future research into the above named hazards should focus on the specific 
characteristics of the South African environment to ensure that the technologies used 
are relevant to the location and are the most appropriate for the facilities, 
infrastructure, and data available. 
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